Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation
نویسندگان
چکیده
[1] A module for predicting the dynamic evolution of the gas phase species and the aerosol size and composition distribution during formation of secondary organic aerosol (SOA) is presented. The module is based on the inorganic gas-aerosol equilibrium model Simulating the Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2) and updated versions of the lumped Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict the Multiphase Partitioning of Organics (MPMPO). The aerosol phase generally consists of an organic phase and an aqueous phase containing dissolved inorganic and organic components. Simulations are presented in which a single salt (either dry or aqueous), a volatile organic compound, and oxides of nitrogen undergo photo-oxidation to form SOA. Predicted SOA mass yields for classes of aromatic and biogenic hydrocarbons exhibit the proper qualitative behavior when compared to laboratory chamber data. Inasmuch as it is currently not possible to represent explicitly aerosol phase chemistry involving condensed products of gas phase oxidation, the present model can be viewed as the most detailed SOA formation model available yet will undergo continued improvement in the future.
منابع مشابه
Size - resolved and chemically resolved model of atmospheric aerosol dynamics
A three-dimensional, size-resolved and chemically resolved aerosol model is developed. Gas-to-particle conversion is represented by dynamic mass transfer between the gas and aerosol phases. Particle-phase thermodynamics is computed by a new thermodynamic model, Simulating Composition of Atmospheric Particles at Equilibrium 2. The aerosol model is applied to simulate gas and aerosol behavior in ...
متن کاملEquilibration timescale of atmospheric secondary organic aerosol partitioning
[1] Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, teq, of SOA ga...
متن کاملA kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the Uni...
متن کاملIn situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds.
An understanding of the gas/particle-phase partitioning of semivolatile compounds is critical in determining atmospheric aerosol formation processes and growth rates, which in turn affect global climate and human health. The Study of Organic Aerosol at Riverside 2005 campaign was performed to gain a better understanding of the factors responsible for aerosol formation and growth in Riverside, C...
متن کاملDevelopment and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM
The aim of this work was to develop a model suited for detailed studies of aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1× 1 km2) to regional scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM). The model treats both vertical and horizontal dispersion ...
متن کامل